

Química Inorgánica I. 2019

https://www.uv.es/moratal/

Facultat de Química

Ejercicios Tema 6: Carbono y Silicio

Prof. Responsable: José María Moratal Mascarell. Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)

Ejercicios T-6: C, Si

- 1.- Escribe las siguientes reacciones químicas ajustadas:
 - a) calentar carbonato de bario

$$BaCO_3(s) \xrightarrow{\Delta} BaO(s) + CO_2(g)$$

b) carbonato de sodio(s) con ácido clorhídrico

$$Na_2CO_3(s) + 2 HCl(ac) \rightarrow 2 NaCl(ac) + CO_2(g) + H_2O(l)$$

c) magnesio metálico con dióxido de carbono en caliente

$$2 \text{ Mg(s)} + \text{CO}_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)} + \text{C(s)}$$

d) carburo de berilio(s) con $H_2O(l)$

$$Be_2C(s) + 4H_2O(l) \rightarrow 2Be(OH)_2(s) + CH_4(g)$$

e) pasar CO2(g) por una disolución acuosa saturada de hidróxido de calcio

$$Ca(OH)_2(susp) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$$

f) calentar dióxido de silicio (en exceso) con carbono

$$SiO_2(s) + 2 C(s) \xrightarrow{\Delta} Si(l) + 2 CO(g)$$

- 1.- Escribe las siguientes reacciones químicas ajustadas:
 - g) calentar hidrogenocarbonato de sodio a ~150 °C

2 NaHCO₃(s)
$$\stackrel{\Delta}{\longrightarrow}$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g)

$$h) CaC_2(s) + H_2O(l) \rightarrow$$

$$CaC_2(s) + 2 H_2O(l) \rightarrow 2 Ca(OH)_2(susp) + C_2H_2(g)$$

i) calentar óxido de cobre(II) con monóxido de carbono

$$CuO(s) + CO(g) \xrightarrow{\Delta} Cu(s) + CO_2(g)$$

j) monóxido de carbono con Cl₂(g)

$$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$

$$k)$$
 $SiCl_{d}(l) + H_{2}O(l) \rightarrow$

$$SiCl_4(l) + 2 H_2O(l) \rightarrow SiO_2(s) + 4 HCl(g)$$

Ejercicios T-6: C, Si

- 2.- Se puede preparar el anión CO₂- utilizando radiación UV. Escribe la estructura de Lewis de este anión, explica cuál es su geometría y compara el orden de enlace en CO_2^- con el del CO_2 .
 - Solución: Procedimiento 1

$$\bullet$$
 CO₂⁻: O-C-O

•
$$n_{ev} = 4 + 2 \cdot 6 + 1 = 17$$
; *ión-molécula impar*

- algún átomo se rodeará por un "octeto incompleto"

$$\mathbf{n}_{e \text{ oct}} = 2 \cdot 8 + \text{"7"} = 23;$$

$$n_{e \text{ comp}} = 23 - 17 = 6$$
;

■ 2 opciones
$$\rightarrow$$
 $| \overrightarrow{O} = \overrightarrow{C} - \overrightarrow{O} |$ $| \overrightarrow{O} = \overrightarrow{C} |$

$$|0 = C - O|$$

$$n_{eq} = 2.2 = 4$$

$$n_{e\pi} = 6 - 4 = 2$$

$$|\overset{\circ}{0} = \overset{\circ}{0} - \overset{\circ}{0}| \iff |\overset{\circ}{0} - \overset{\circ}{0} = \overset{\circ}{0}|$$

pares solitarios:

$$-N(PS) = (17-6)/2 = (10+1)/2 = 5 + "1/2"$$

• Angular (> 120°)

•
$$OE = 1.5$$

- Solución: Procedimiento 2
 - CO₂-: O-C-O
 - $\mathbf{n}_{ev} = 4 + 2 \cdot 6 + 1 = 17$; ión-molécula impar
 - $\mathbf{n}_{\text{elect }\sigma} = 2 \cdot 2 = 4$
 - completar octetos átomos terminales:
 - $-n_{e \text{ ot}} = 2.6 = 12$
 - electrones para átomo central:

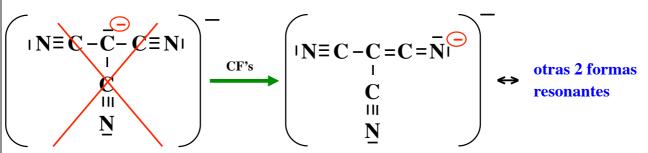
$$-n_{\text{eatc}} = 17 - (12 + 4) = 1$$

CF's y su reducción:

$$| \underline{O} - \underline{C} - \underline{O} |$$
reducción CF's
$$| \overline{O} = \underline{C} - \underline{O} |$$

$$\Leftrightarrow | \underline{O} - \underline{C} = \underline{O} |$$

$$|\mathbf{O} = \mathbf{C} - \mathbf{O}|$$


$$\overline{\mathbf{O}} - \mathbf{C} = \overline{\mathbf{O}}$$

- Angular (> 120°)
 - OE = 1.5

Ejercicios T-6: C, Si

- 3.- Escribe la estructura de Lewis del anión $C(CN)_3$, explica cuál es su geometría y determina el orden de enlace C-C.
- Solución:
 - $C(CN)_3^-$:
 - $n_{ev} = 4 \cdot 4 + 3 \cdot 5 + 1 = 32$ $n_{ex} = 24-12 = 12$
 - $n_{e \text{ oct}} = 7 \cdot 8 = 56$; pares solitarios:
 - $n_{e \text{ comp}} = 56 32 = 24$;
- -N(PS) = (32 24) / 2 = 4
- red enlaces sigma

 $n_{e\sigma} = 6.2 = 12$

triangular plana; ¿OE (CC)?

$$OE(CC) = 1 + 1/3 = 1,33$$

$$OE(CN) = (3 + 3 + 2)/3 = 2,66$$

4.- En el proceso Degussa de obtención industrial de cianuro de hidrógeno se hace reaccionar metano con amoníaco a 1200-1300°C utilizando platino como catalizador:

$$CH_{4}(g) + NH_{3}(g) \xrightarrow{Pt, \Delta} HCN(g) + 3 H_{2}(g)$$

$$Datos. - \Delta H_{f}^{o}(kJ \cdot mol^{-1}): HCN(g) = + 135,1 ; CH_{4}(g) = -74,6 ; NH_{3}(g) = -45,9 ;$$

$$S^{o}(J \cdot mol^{-1} \cdot K^{-1}): H_{2}(g) = + 131,0 ; HCN(g) = + 201,8 ; CH_{4}(g) = + 186,3 ; NH_{3}(g) = + 192,8$$

- a) Calcula ΔH_r^o , y realiza un análisis termoquímico de cuáles son las condiciones de P y T más adecuadas para la obtención de cianuro de hidrógeno.
- b) Calcula ΔS_r^o y ΔG_r^o para dicha reacción a 25°C y en el caso de que la reacción no sea espontánea, determina a partir de qué temperatura será espontánea. Después compara tus predicciones con las condiciones usadas en la industria química justificando las posibles diferencias.
 - Solución:
 - a)
 - $-\Delta H_{\rm p}^{0} = 135,1 [(-74,6) + (-45,9)] = +255,6 \text{ kJ}$
 - proceso endotérmico y con aumento del nº de moles gaseosos → se favorecerá a alta T y baja P
 - predicción termoquímica → T alta y P baja

7

Ejercicios T-6: C, Si

4.- En el proceso Degussa de obtención industrial de cianuro de hidrógeno:

$$CH_{4}(g) + NH_{3}(g) \xrightarrow{Pt, \Delta} HCN(g) + 3 H_{2}(g)$$
 Datos.- $\Delta H_{f}^{o}(kJ \cdot mol^{-1})$: $HCN(g) = +135,1$; $CH_{4}(g) = -74,6$; $NH_{3}(g) = -45,9$; $S^{o}(J \cdot mol^{-1} \cdot K^{-1})$: $H_{2}(g) = +131,0$; $HCN(g) = +201,8$; $CH_{4}(g) = +186,3$; $NH_{3}(g) = +192,8$

- b) Calcula ΔS_r^o y ΔG_r^o para dicha reacción a 25°C y en el caso de que la reacción no sea espontánea, determina a partir de qué temperatura será espontánea. Después compara tus predicciones con las condiciones usadas en la industria química justificando las posibles diferencias.
 - Solución:
 - **b**)

$$-\Delta S_{r}^{0} = 201.8 + 3.131 - (186.3 + 192.8) = 594.8 - 379.1 = 215.7 \text{ J} \cdot \text{K}^{-1}$$

- $-\Delta G_r^0 = 255,6 298 \cdot 0,2157 = +191,32 \text{ kJ};$ no espontánea
- para $\Delta G_r^0 = 0 \rightarrow T = \Delta H_r^0 / \Delta S_r^0 = 255,6/0,2157 = 1184,98 \text{ K} = 911,98 ^{\circ}\text{C}$
- reacción espontánea → para T > 912 °C
- las predicciones son concordantes con las condiciones de trabajo de la industria,
 ya que la síntesis se realiza a alta temperatura y presión ambiental (la temperatura concreta viene impuesta por el catalizador)

- 5.- Con referencia a la obtención industrial del silicio de grado metalúrgico (pureza 96-97%), responde a las cuestiones siguientes:
 - a) Escribe la reacción química ajustada correspondiente a la síntesis industrial del silicio
 - b) La reacción no es espontánea a temperatura ambiente. Sin hacer cálculos ¿cuál/es de los términos entálpico o entrópico favorecerá la espontaneidad de la reacción? y ¿cuál/es será desfavorable? justifica la respuesta
 - c) Realiza una estimación de la temperatura a partir de la cual la reacción será espontánea Datos.- p. f. /p. e. (Si) = 1414/3265 °C; ΔH_f (kJ·mol⁻¹): CO(g) = -111; $SiO_2(s) = -911$; $S^o(J\cdot mol^{-1}\cdot K^{-1})$: Si(s) = 19; C(s) = 6; $SiO_2(s) = 41$; CO(g) = 198
 - d) Para realiza una estimación más precisa de la temperatura a partir de la cual la reacción será espontánea ¿qué otros datos (ΔH_f^o , S^o) necesitarías?
 - Solución:

■ a)
$$SiO_2(s) + 2 C(s) \rightarrow Si(l) + 2 CO(g)$$

- **b**)
 - el término entrópico es favorable, ya que en los productos hay 2 moles de gas, $\Delta S_{\rm r}{}^{\rm o} > 0$
 - como la reacción no es espontánea a temperatura ambiente, necesariamente el término entálpico ha de ser desfavorable es decir $\Delta H_r^o > 0$, reacción endotérmica

C

Ejercicios T-6: C, Si

- 5.- Con referencia a la obtención industrial del silicio de grado metalúrgico (pureza 96-97%), responde a las cuestiones siguientes:
 - c) Realiza una estimación de la temperatura a partir de la cual la reacción será espontánea Datos.- p. f. /p. e. (Si) = 1414/3265 °C; $\Delta H_f^{o}(kJ \cdot mol^{-1})$: CO(g) = -111; $SiO_2(s) = -911$; $S^{o}(J \cdot mol^{-1} \cdot K^{-1})$: Si(s) = 19; C(s) = 6; $SiO_2(s) = 41$; CO(g) = 198
 - d) Para realiza una estimación más precisa de la temperatura a partir de la cual la reacción será espontánea ¿qué otros datos (ΔH_f^o , S^o) necesitarías?
 - Solución:

• c)
$$SiO_2(s) + 2 C(s) \rightarrow Si(l) + 2 CO(g)$$

$$-\Delta H_{r}^{0} \cong 2 \cdot (-111) - (-911) = +689 \text{ kJ}$$

$$-\Delta S_r^0 \approx 2 \cdot 198 + 19 - (41 + 2 \cdot 6) = +362 \text{ J} \cdot \text{K}^{-1}$$

- para
$$\Delta G_r^0 = 0$$
 → $T = \Delta H_r^0 / \Delta S_r^0 = 689/0,362 = 1903,3 \text{ K}$ $t^a = 1630,2 \, ^{\circ}\text{C}$

- d)
 - como la temperatura ha de ser mayor que 1631 $^{\circ}$ C, el Si se encontrará en estado fundido, por lo tanto se necesitarían datos de $\Delta H_f^{\circ}[Si(l)]$ y la $S^{\circ}[Si(l)]$

6.- El silicio de grado metalúrgico (pureza 96-97%) se puede purificar mediante un proceso en dos etapas en la primera de las cuales, a unos 300°C, se obtiene triclorosilano, SiHCl₃, y en una segunda etapa, a partir del triclorosilano, se obtiene silicio purísimo.

Datos.- punto ebullición
$$SiHCl_3 = 33$$
 °C ; $\Delta H_f^o(kJ\cdot mol^{-1})$: $HCl(g) = -95$,3 ; $SiHCl_3(g) = -496$,2 ; $S^o(J\cdot mol^{-1}\cdot K^{-1})$: $Si(s) = 19$; $HCl(g) = 187$; $SiHCl_3(g) = 313$,7 ; $H_2(g) = 130$,7.

Teniendo en cuenta los datos que se indican, responde a las cuestiones siguientes:

- a) Explica el proceso de purificación del silicio, vía la obtención del triclorosilano, escribiendo las 2 reacciones ajustadas que tienen lugar.
- b) Calcula cuál es la temperatura mínima necesaria para que la transformación de triclorosilano en silicio sea espontánea.
- Solución:
 - a) <u>etapa 1)</u> calentar Si impuro con HCl(g) a ~ 300°C

$$Si(s) + 3 HCl(g) \xrightarrow{\Delta} SiHCl_3(g) + H_2(g)$$
 [1]

- separar ambos gases → el SiHCl₃ licúa a tª < 33 °C
- guardar el H₂ para la <u>etapa 2)</u>
- destilar repetidamente el SiHCl₃ para eliminar impurezas menos volátiles, hasta que sea purísimo

11

Ejercicios T-6: C, Si

6.- El silicio de grado metalúrgico (pureza 96-97%) se puede purificar mediante un proceso en dos etapas en la primera de las cuales, a unos 300°C, se obtiene triclorosilano, SiHCl₃, y en una segunda etapa, a partir del triclorosilano, se obtiene silicio purísimo.

Datos.- punto ebullición SiHCl₃ = 33 °C ;
$$\Delta H_f^o(kJ \cdot mol^{-1})$$
: $HCl(g) = -95.3$; $SiHCl_3(g) = -496.2$; $S^o(J \cdot mol^{-1} \cdot K^{-1})$: $Si(s) = 19$; $HCl(g) = 187$; $SiHCl_3(g) = 313.7$; $H_2(g) = 130.7$.

Teniendo en cuenta los datos que se indican, responde a las cuestiones siguientes:

- a) Explica el proceso de purificación del silicio, vía la obtención del triclorosilano, escribiendo las 2 reacciones ajustadas que tienen lugar.
- b) Calcula cuál es la temperatura mínima necesaria para que la transformación de triclorosilano en silicio sea espontánea.
- a) <u>etapa 2)</u> calentar SiHCl₃ con H₂(g) a temperatura elevada [reacción inversa a la 1)]

$$SiHCl_3(g) + H_2(g) \xrightarrow{\Delta} Si(s) + 3 HCl(g)$$
 [2]

- reciclar el HCl(g) a la etapa 1)

b)
$$\Delta H_r^0 = 3 (-95,3) - (-496,2) = +210,3 \text{ kJ}$$

$$-\Delta S_r^0 = 19 + 3.187 - (130.7 + 313.7) = 580 - 444.4 = 135.6 \text{ J} \cdot \text{K}^{-1}$$

- para
$$\Delta G_r^o = 0$$
 → $T = \Delta H_r^o / \Delta S_r^o = 210,3/0,1356 = 1550,88 \text{ K}$ $t^a > 1277,9$ °C

- 7.- Escribe la reacción química ajustada correspondiente a la síntesis industrial del carburo de silicio y responde a las cuestiones siguientes:
 - a) la reacción no es espontánea a temperatura ambiente ¿cuál de los términos entálpico o entrópico favorecerá la espontaneidad de la reacción?
 - b) determina los valores de $\Delta H_r^o y \Delta S_r^o$ para confirmar tu deducción
 - c) realiza una estimación de la temperatura a partir de la cual la reacción será espontánea
 - d) calcula el valor de ΔG_r^o a 2000 °C

Datos.-
$$\Delta H_f^o(kJ \cdot mol^{-1})$$
: $SiO_2(s) = -911$; $SiC(s) = -65$; $CO(g) = -111$; $S^o(J \cdot mol^{-1} \cdot K^{-1})$: $SiO_2(s) = 41$; $SiC(s) = 17$; $CO(g) = 198$; $C(s) = 6$.

• Solución:

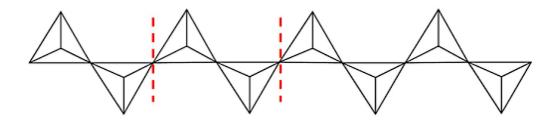
$$SiO_2(s) + 3 C(s) \xrightarrow{\Delta} SiC(s) + 2 CO(g)$$

- a) $\Delta S_r^o > 0$, la variación de entropía favorece la espontaneidad del proceso
 - y ... como el proceso no es espontáneo a TPAE → debe ser endotérmico, $\Delta H_r^o > 0$
- b)
 - $-\Delta H_{p}^{0} = -65 + 2 \cdot (-111) (-911) = -287 + 911 = +624 \text{ kJ}$
 - $-\Delta S_r^0 = 17 + 2 \cdot 198 (41 + 3.6) = 413 59 = +354 \text{ J} \cdot \text{K}^{-1}$

13

Ejercicios T-6: C, Si

- 7.- Escribe la reacción química ajustada correspondiente a la síntesis industrial del carburo de silicio y responde a las cuestiones siguientes:
 - •••••
 - c) realiza una estimación de la temperatura a partir de la cual la reacción será espontánea
 - d) calcula el valor de ΔG_r^o a 2000 °C

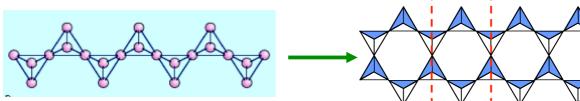

Datos.-
$$\Delta H_f^o(kJ \cdot mol^{-1})$$
: $SiO_2(s) = -911$; $SiC(s) = -65$; $CO(g) = -111$; $S^o(J \cdot mol^{-1} \cdot K^{-1})$: $SiO_2(s) = 41$; $SiC(s) = 17$; $CO(g) = 198$; $C(s) = 6$.

• Solución:

$$SiO_2(s) + 3 C(s) \xrightarrow{\Delta} SiC(s) + 2 CO(g)$$

- c) para $\Delta G_r^o = 0 \rightarrow T = \Delta H_r^o / \Delta S_r^o = 624/0,354 = 1762,7 \text{ K} = 1489,7 °C$
 - reacción espontánea → para T > 1489,7 °C
 - (proceso industrial trabaja a $t^a \ge 2000$ °C)
- d) $\Delta G_r^{\circ}(2000 \, ^{\circ}\text{C}) = 624 2273 \cdot (354 \cdot 10^{-3}) = 624 804,64 = -180,64 \text{ kJ}$; espontánea

- 8.- Los minerales de la familia de los piroxenos son silicatos con cadenas simples. Explica cómo están unidos los grupos SiO₄⁴⁻ entre sí y cuál es la "fórmula empírica" de la red aniónica de silicato.
 - Solución:
 - cada tetraedro {SiO₄} comparte dos vértices formando una cadena infinita


- ¿relación Si:O? 2:6 → aniones lineales $[Si_2O_6^{4-}]_{\infty}$

15

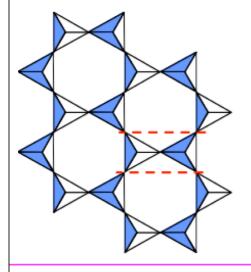
Ejercicios T-6: C, Si

- 9.- La crocidolita (asbesto azul), Na₂Fe₅(Si₄O₁₁)₂(OH)₂, es un silicato mineral con cadenas dobles o cintas que pertenece a la familia de los anfíboles y cuya manipulación supone un grave riesgo para la salud. a) Describe como se encuentran unidos los grupos silicato SiO₄⁴⁻ entre sí y cuál es la "fórmula empírica" de la red de silicato. b) Determina cuantos iones hierro deben tener carga 2+ y cuántos carga +3.
 - Solución:
 - a) Na₂Fe₅(Si₄O₁₁)₂(OH)₂

• formación de enlaces transversales entre dos cadenas [SiO₃²⁻]_n formando una cadena doble infinita

relación Si:O = 4:11 \rightarrow aniones lineales $[Si_4O_{11}^{6-}]_n$

- los cationes Na⁺, Fe²⁺ y Fe³⁺ unen estas bandas
- los cationes ocupan las posiciones de coordinación determinadas por oxígenos de la banda y oxígenos—OH adicionales


16

- 9.- La crocidolita (asbesto azul), $Na_2Fe_5(Si_4O_{11})_2(OH)_2$, es un silicato mineral con cadenas dobles o cintas que
 - b) Determina cuantos iones hierro deben tener carga 2+ y cuántos carga +3.
 - Solución:
 - b) $Na_2Fe_5(Si_4O_{11})_2(OH)_2$ ${}_{6}Fe^{3+}$ vs. Fe^{2+} ?
 - balance de cargas $\rightarrow \Sigma$ (cargas + y -) = 0; $Na_2Fe^{II}_xFe^{III}_{5-x}(Si_4O_{11})_2(OH)_2$
 - $2\cdot(+1) + x\cdot(+2) + (5-x)\cdot(+3) + 8\cdot(+4) + 22\cdot(-2) + 2\cdot(-1) = 0$
 - 2 + 2x + 15 3x + 32 44 2 = 0; 49 46 = x
 - x = 3
 - 3 Fe^{II} y 2 Fe^{III} \rightarrow Na₂Fe^{II}₃Fe^{III}₂ (Si₄O₁₁)₂(OH)₂

17

Ejercicios T-6: C, Si

- 10.- El mineral crisotilo, también conocido como asbesto blanco, es un silicato laminar. Explica cómo se encuentran unidos los grupos silicato SiO_4^{4-} entre sí, cuál es la composición Si:O y cuál es la "fórmula empírica" de la red de silicato.
 - Solución:
 - las bandas o cintas de tetraedros se unen formando una lámina donde todos los tetraedros comparten los tres vértices

- composición Si:O = 2:5
- por cada tetraedro hay 1 Si, 1 O sin compartir y 3 O compartidos

$$>$$
 SiOO_{3/2} \rightarrow SiO_{5/2} \rightarrow [Si₂O₅]²⁻

- fórmula empírica → $[Si_2O_5^{2-}]_n$

- AT .			~ ~ ~ ~
(Li 10	WC1C1A	· (1 (1
Lile	rcicios	L-U.	(a, b)

11.- El agua de una zeolita se elimina por calentamiento intenso. El proceso de absorción de agua por una zeolita anhidra, ¿es exotérmico o endotérmico ?

• Solución:

 como la deshidratación de la zeolita es endotérmica, el proceso contrario de absorción de agua será exotérmico

19